Diyelim ki anlamlı korelasyona sahip iki değişkenli bir yanıtım var. Bu sonuçları modellemenin iki yolunu karşılaştırmaya çalışıyorum. Tek yönlü iki sonuç arasındaki fark modellemek için: bir başka yolu ise ya da bunları model: ( y i j = β 0 + zaman + X ' β )
gls
gee
İşte bir foo örneği:
#create foo data frame
require(mvtnorm)
require(reshape)
set.seed(123456)
sigma <- matrix(c(4,2,2,3), ncol=2)
y <- rmvnorm(n=500, mean=c(1,2), sigma=sigma)
cor(y)
x1<-rnorm(500)
x2<-rbinom(500,1,0.4)
df.wide<-data.frame(id=seq(1,500,1),y1=y[,1],y2=y[,2],x1,x2)
df.long<-reshape(df.wide,idvar="id",varying=list(2:3),v.names="y",direction="long")
df.long<-df.long[order(df.long$id),]
df.wide$diff_y<-df.wide$y2-df.wide$y1
#regressions
fit1<-lm(diff_y~x1+x2,data=df.wide)
fit2<-lm(y~time+x1+x2,data=df.long)
fit3<-gls(y~time+x1+x2,data=df.long, correlation = corAR1(form = ~ 1 | time))
fit1
fit2
fit2
fit3
Holland, Paul & Donald Rubin. 1983. On Lord’s Paradox. In Principles of modern psychological measurement: A festchrift for Frederic M. Lord edited by Wainer, Howard & Samuel Messick pgs:3-25. Lawrence Erlbaum Associates. Hillsdale, NJ.