Model katsayılarının standart hataları, kovaryans matrisinin köşegen girişlerinin kare kökleridir. Aşağıdakileri göz önünde bulundur:
, x i , j, değeridir j i için th belirleyicisiX = ⎡⎣⎢⎢⎢⎢⎢11⋮1x1,1x2,1⋮xn,1……⋱…x1,px2,p⋮xn,p⎤⎦⎥⎥⎥⎥⎥xi,jji gözlemler .
(NOT: Bu, kesişen bir model olduğunu varsayar.)
-
, burada π i , gözlem i için sınıf üyeliği tahmini olasılığını temsil eder.V = ⎡⎣⎢⎢⎢⎢⎢π^1(1−π^1)0⋮00π^2(1−π^2)⋮0……⋱…00⋮π^n(1−π^n)⎤⎦⎥⎥⎥⎥⎥π^ii
Kovaryans matrisi şu şekilde yazılabilir:
(XTVX)−1
Bu, aşağıdaki kodla uygulanabilir:
import numpy as np
from sklearn import linear_model
# Initiate logistic regression object
logit = linear_model.LogisticRegression()
# Fit model. Let X_train = matrix of predictors, y_train = matrix of variable.
# NOTE: Do not include a column for the intercept when fitting the model.
resLogit = logit.fit(X_train, y_train)
# Calculate matrix of predicted class probabilities.
# Check resLogit.classes_ to make sure that sklearn ordered your classes as expected
predProbs = resLogit.predict_proba(X_train)
# Design matrix -- add column of 1's at the beginning of your X_train matrix
X_design = np.hstack([np.ones((X_train.shape[0], 1)), X_train])
# Initiate matrix of 0's, fill diagonal with each predicted observation's variance
V = np.diagflat(np.product(predProbs, axis=1))
# Covariance matrix
# Note that the @-operater does matrix multiplication in Python 3.5+, so if you're running
# Python 3.5+, you can replace the covLogit-line below with the more readable:
# covLogit = np.linalg.inv(X_design.T @ V @ X_design)
covLogit = np.linalg.inv(np.dot(np.dot(X_design.T, V), X_design))
print("Covariance matrix: ", covLogit)
# Standard errors
print("Standard errors: ", np.sqrt(np.diag(covLogit)))
# Wald statistic (coefficient / s.e.) ^ 2
logitParams = np.insert(resLogit.coef_, 0, resLogit.intercept_)
print("Wald statistics: ", (logitParams / np.sqrt(np.diag(covLogit))) ** 2)
Tüm söylenenler, statsmodels
bir çok "kutudan çıktığı" tanılamaya erişmek istiyorsanız, muhtemelen daha iyi bir paket olacaktır.