Doğrusal Karışık Modellerin rastgele etkileri üzerine model seçimi ile ilgili çeşitli açıklamalar REML kullanmayı öğretmektedir. Bir düzeyde REML ve ML arasındaki farkı biliyorum, ancak ML önyargılı olduğu için REML'nin neden kullanılması gerektiğini anlamıyorum. Örneğin, ML kullanarak normal bir dağıtım modelinin varyans parametresinde bir LRT yapmak yanlış mıdır (aşağıdaki koda bakın)? Model seçiminde ML olmanın neden tarafsız olmasının daha önemli olduğunu anlamıyorum. Bence nihai cevap "çünkü model seçimi REML ile ML'den daha iyi çalışır" olmalı ama bundan biraz daha fazlasını bilmek istiyorum. LRT ve AIC türevlerini okumadım (onları iyice anlamak için yeterince iyi değilim), ancak REML türevlerinde açıkça kullanılıyorsa, sadece bunun yeterli olacağını bilerek (örn.
n <- 100
a <- 10
b <- 1
alpha <- 5
beta <- 1
x <- runif(n,0,10)
y <- rnorm(n,a+b*x,alpha+beta*x)
loglik1 <- function(p,x,y){
a <- p[1]
b <- p[2]
alpha <- p[3]
-sum(dnorm(y,a+b*x,alpha,log=T))
}
loglik2 <- function(p,x,y){
a <- p[1]
b <- p[2]
alpha <- p[3]
beta <- p[4]
-sum(dnorm(y,a+b*x,alpha+beta*x,log=T))
}
m1 <- optim(c(a,b,alpha),loglik1,x=x,y=y)$value
m2 <- optim(c(a,b,alpha,beta),loglik2,x=x,y=y)$value
D <- 2*(m1-m2)
1-pchisq(D,df=1) # p-value