Keras'ta “bire çok” ve “çoktan çoğa” dizi tahmini nasıl uygulanır?


13

Keras kodlama farkını bir-çok (örneğin, tek görüntülerin sınıflandırılması) ve çok-çok (ör. Görüntü dizilerinin sınıflandırılması) dizi etiketlemesi için yorumlamaya çalışıyorum. Sık sık iki farklı kod türü görüyorum:

Tip 1, böyle bir TimeDistributed uygulanmadığı yerdir:

model=Sequential()

model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1], border_mode="valid", input_shape=[1, 56,14]))
model.add(Activation("relu"))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation("relu"))
model.add(MaxPooling2D(pool_size=pool_size))

model.add(Reshape((56*14,)))
model.add(Dropout(0.25))
model.add(LSTM(5))
model.add(Dense(50))
model.add(Dense(nb_classes))
model.add(Activation("softmax"))

Tip 2, TimeDistributed'in şu şekilde uygulandığı yerdir:

model = Sequential()

model.add(InputLayer(input_shape=(5, 224, 224, 3)))
model.add(TimeDistributed(Convolution2D(64, (3, 3))))
model.add(TimeDistributed(MaxPooling2D((2,2), strides=(2,2))))
model.add(LSTM(10))
model.add(Dense(3))

Sorularım:

  • Benim varsayım, Tip 1'in bir-çok türü ve Tip 2'nin çok-çok türü olduğu doğru mu? Yoksa TimeDistributedbu açıdan bir ilgisi yok mu?

  • Bir-çok veya çok-çok durumunun her birinde, 1 düğüm "uzun" (sırayla sadece bir değer yayan) olması gereken son yoğun tabaka ve
    kaç tane
    1-uzunluğun belirlenmesinden önceki tekrarlayan tabaka sorumludur verilecek değer? Veya son yoğun bir katman burada N düğümler oluşur gerekiyordu N=max sequence length? Öyleyse, N paralel "vanilya" tahmincisi
    ile birden çok
    çıkışla benzer bir girdi üretebildiğimizde burada RNN kullanmanın anlamı nedir?

  • RNN'lerde zaman atımı sayısı nasıl tanımlanır? Bir şekilde
    çıkış dizisi uzunluğu ile ilişkili mi yoksa
    ayarlanması gereken bir hiperparametre mi?

  • Tip 1 örneğimin Inn örneği
    , model sadece bir sınıf tahmini (mümkünse
    nb_classes) yayınladığında LSTM'nin uygulanmasının anlamı nedir? Ya LSTM katmanını atlarsa?


Her iki modelin özetini verebilir misiniz?
Fadi Bakoura

Yanıtlar:


2

Tekrarlayan herhangi bir katman kullanmanın amacı, çıktının yalnızca diğer öğelerden bağımsız tek bir öğe değil, aynı zamanda bir dizi öğeden oluşmasıdır, öyle ki katmandaki işlemin dizideki bir öğe üzerindeki sonucu sonuç olur Bu öğenin ve sıradaki herhangi bir öğenin Timesteps sayısı, böyle bir dizinin ne kadar uzun olduğunu tanımlar. Yani, bir sırayla kaç öğe işlenmeli ve birbirlerinin sonuçta ortaya çıkan çıktılarını etkilemelidir.

Bir LSTM katmanı, form_of_timesteps, dimension_of_each_item biçimindeki girdiyi kabul edecek şekilde çalışır. Return_sequences parametresi False olarak ayarlanırsa, varsayılan olarak katman tüm zaman aralıklarının girişlerini tek bir çıktıda "birleştirir". 10 öğeden oluşan bir diziyi göz önünde bulundurursanız, return_sequences değerinin False olarak ayarlanmış bir LSTM katmanı böyle bir diziden tek bir çıktı öğesi oluşturur ve bu tek öğenin öznitelikleri, sıra. Çoktan bire tasarımda istediğiniz şey budur.

Return_sequences (True) değerine ayarlanmış bir LSTM katmanı, bir giriş dizisindeki her öğe için (timestep) bir çıktı üretir. Bu, herhangi bir zaman aralığında, çıkışın sadece şu anda çalıştırılmakta olan öğeye değil, aynı zamanda dizideki önceki öğelere de bağlı olacağı şekilde yapılır. Çoktan çoğa tasarımda istediğiniz şey budur.

Bir LSTM katmanı bir dizi öğeyi girdi olarak aldığından, modelinizdeki bir LSTM katmanından önceki herhangi bir katmanın çıktı olarak bir sıra üretmesi gerekir. Tip 1 modeliniz durumunda, ilk birkaç katman sekanslar üzerinde değil, aynı anda tek bir öğe üzerinde çalışır. Bu nedenle, LSTM için üzerinde çalışılacak bir dizi ürün üretilmez.

TimeDistributed kullanmak, bir katmandaki her öğenin birbirini etkilemeden bir katman üzerinde çalışmasını mümkün kılar. Zaman Dağıtılmış katmanlar böylece öğelerin dizileri üzerinde çalışır, ancak özyineleme yoktur.

Tip 2 modeliniz durumunda, ilk katmanlar 5 timesteps uzunluğunda bir sekans üretecek ve sekanstaki öğelerin her biri üzerinde yapılan işlemler birbirinden bağımsız olacaktır, çünkü TimeDistributed içine sarılmış katmanlar tekrarlanmamaktadır. LSTM katmanı varsayılan ayarları (return_sequences = False) kullandığından, LSTM katmanı bu tür 5 öğeden oluşan sıralar için tek bir çıktı üretir.

Modelinizdeki son çıkış düğümü sayısı tamamen kullanım durumuna bağlıdır. Tek bir düğüm, ikili sınıflandırma veya bir çeşit skor üretmek için uygundur.


1

Önceki çalışmamı kullanabileceğinizi düşünüyorum. Bu kodda sinüs dalgaları (rasgele dalga boyları ve fazlardan) oluşturur ve bu sinüs dalgalarından bir dizi noktaya bir LSTM eğitir ve her sinüs dalgasını tamamlayan 150 noktadan oluşan bir dizi çıkarırım.

Bu model:

    features_num=5 
    latent_dim=40

    ##
    encoder_inputs = Input(shape=(None, features_num))
    encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoder_inputs)
    encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoded)
    encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoded)
    encoded = LSTM(latent_dim, return_state=True)(encoded)

    encoder = Model (input=encoder_inputs, output=encoded)
    ##

    encoder_outputs, state_h, state_c = encoder(encoder_inputs)
    encoder_states = [state_h, state_c]

    decoder_inputs=Input(shape=(1, features_num))
    decoder_lstm_1 = LSTM(latent_dim, return_sequences=True, return_state=True)
    decoder_lstm_2 = LSTM(latent_dim, return_sequences=True, return_state=True)
    decoder_lstm_3 = LSTM(latent_dim, return_sequences=True, return_state=True)
    decoder_lstm_4 = LSTM(latent_dim, return_sequences=True, return_state=True)

    decoder_dense = Dense(features_num)

    all_outputs = []
    inputs = decoder_inputs


    states_1=encoder_states
   # Place holder values:
    states_2=states_1; states_3=states_1; states_4=states_1

    for _ in range(1):
        # Run the decoder on the first timestep
        outputs_1, state_h_1, state_c_1 = decoder_lstm_1(inputs, initial_state=states_1)
        outputs_2, state_h_2, state_c_2 = decoder_lstm_2(outputs_1)
        outputs_3, state_h_3, state_c_3 = decoder_lstm_3(outputs_2)
        outputs_4, state_h_4, state_c_4 = decoder_lstm_4(outputs_3)

        # Store the current prediction (we will concatenate all predictions later)
        outputs = decoder_dense(outputs_4)
        all_outputs.append(outputs)
        # Reinject the outputs as inputs for the next loop iteration
        # as well as update the states
        inputs = outputs
        states_1 = [state_h_1, state_c_1]
        states_2 = [state_h_2, state_c_2]
        states_3 = [state_h_3, state_c_3]
        states_4 = [state_h_4, state_c_4]


    for _ in range(149):
        # Run the decoder on each timestep
        outputs_1, state_h_1, state_c_1 = decoder_lstm_1(inputs, initial_state=states_1)
        outputs_2, state_h_2, state_c_2 = decoder_lstm_2(outputs_1, initial_state=states_2)
        outputs_3, state_h_3, state_c_3 = decoder_lstm_3(outputs_2, initial_state=states_3)
        outputs_4, state_h_4, state_c_4 = decoder_lstm_4(outputs_3, initial_state=states_4)

        # Store the current prediction (we will concatenate all predictions later)
        outputs = decoder_dense(outputs_4)
        all_outputs.append(outputs)
        # Reinject the outputs as inputs for the next loop iteration
        # as well as update the states
        inputs = outputs
        states_1 = [state_h_1, state_c_1]
        states_2 = [state_h_2, state_c_2]
        states_3 = [state_h_3, state_c_3]
        states_4 = [state_h_4, state_c_4]


    # Concatenate all predictions
    decoder_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)   

    model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

    #model = load_model('pre_model.h5')


    print(model.summary())

Ve bu tüm senaryo:

from keras.models import Model
from keras.layers import Input, LSTM, Dense, TimeDistributed,Lambda, Dropout, Activation ,RepeatVector
from keras.callbacks import ModelCheckpoint 
import numpy as np

from keras.layers import Lambda
from keras import backend as K

from keras.models import load_model

import os


features_num=5 
latent_dim=40

##
encoder_inputs = Input(shape=(None, features_num))
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoder_inputs)
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoded)
encoded = LSTM(latent_dim, return_state=False ,return_sequences=True)(encoded)
encoded = LSTM(latent_dim, return_state=True)(encoded)

encoder = Model (input=encoder_inputs, output=encoded)
##

encoder_outputs, state_h, state_c = encoder(encoder_inputs)
encoder_states = [state_h, state_c]

decoder_inputs=Input(shape=(1, features_num))
decoder_lstm_1 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_2 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_3 = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_lstm_4 = LSTM(latent_dim, return_sequences=True, return_state=True)

decoder_dense = Dense(features_num)

all_outputs = []
inputs = decoder_inputs

# Place holder values:
states_1=encoder_states
states_2=states_1; states_3=states_1; states_4=states_1

for _ in range(1):
    # Run the decoder on one timestep
    outputs_1, state_h_1, state_c_1 = decoder_lstm_1(inputs, initial_state=states_1)
    outputs_2, state_h_2, state_c_2 = decoder_lstm_2(outputs_1)
    outputs_3, state_h_3, state_c_3 = decoder_lstm_3(outputs_2)
    outputs_4, state_h_4, state_c_4 = decoder_lstm_4(outputs_3)

    # Store the current prediction (we will concatenate all predictions later)
    outputs = decoder_dense(outputs_4)
    all_outputs.append(outputs)
    # Reinject the outputs as inputs for the next loop iteration
    # as well as update the states
    inputs = outputs
    states_1 = [state_h_1, state_c_1]
    states_2 = [state_h_2, state_c_2]
    states_3 = [state_h_3, state_c_3]
    states_4 = [state_h_4, state_c_4]


for _ in range(149):
    # Run the decoder on one timestep
    outputs_1, state_h_1, state_c_1 = decoder_lstm_1(inputs, initial_state=states_1)
    outputs_2, state_h_2, state_c_2 = decoder_lstm_2(outputs_1, initial_state=states_2)
    outputs_3, state_h_3, state_c_3 = decoder_lstm_3(outputs_2, initial_state=states_3)
    outputs_4, state_h_4, state_c_4 = decoder_lstm_4(outputs_3, initial_state=states_4)

    # Store the current prediction (we will concatenate all predictions later)
    outputs = decoder_dense(outputs_4)
    all_outputs.append(outputs)
    # Reinject the outputs as inputs for the next loop iteration
    # as well as update the states
    inputs = outputs
    states_1 = [state_h_1, state_c_1]
    states_2 = [state_h_2, state_c_2]
    states_3 = [state_h_3, state_c_3]
    states_4 = [state_h_4, state_c_4]


# Concatenate all predictions
decoder_outputs = Lambda(lambda x: K.concatenate(x, axis=1))(all_outputs)   

model = Model([encoder_inputs, decoder_inputs], decoder_outputs)

#model = load_model('pre_model.h5')


print(model.summary())


model.compile(loss='mean_squared_error', optimizer='adam')


def create_wavelength(min_wavelength, max_wavelength, fluxes_in_wavelength, category )  :         
#category :: 0 - train ; 2 - validate ; 4- test. 1;3;5 - dead space
    c=(category+np.random.random())/6         
    k = fluxes_in_wavelength
#
    base= (np.trunc(k*np.random.random()*(max_wavelength-min_wavelength))       +k*min_wavelength)  /k
    answer=base+c/k
    return (answer)       

def make_line(length,category):
    shift= np.random.random()
    wavelength = create_wavelength(30,10,1,category)
    a=np.arange(length)
    answer=np.sin(a/wavelength+shift)
    return answer

def make_data(seq_num,seq_len,dim,category):
    data=np.array([]).reshape(0,seq_len,dim)
    for i in range (seq_num):
        mini_data=np.array([]).reshape(0,seq_len)
        for j in range (dim):
            line = make_line(seq_len,category)
            line=line.reshape(1,seq_len)            
            mini_data=np.append(mini_data,line,axis=0)
        mini_data=np.swapaxes(mini_data,1,0)
        mini_data=mini_data.reshape(1,seq_len,dim)      
        data=np.append(data,mini_data,axis=0)
    return (data)


def train_generator():
    while True:
        sequence_length = np.random.randint(150, 300)+150       
        data=make_data(1000,sequence_length,features_num,0) # category=0 in train


    #   decoder_target_data is the same as decoder_input_data but offset by one timestep

        encoder_input_data = data[:,:-150,:] # all but last 150 

        decoder_input_data = data[:,-151,:] # the one before the last 150.
        decoder_input_data=decoder_input_data.reshape((decoder_input_data.shape[0],1,decoder_input_data.shape[1]))


        decoder_target_data = (data[:, -150:, :]) # last 150        
        yield [encoder_input_data, decoder_input_data], decoder_target_data
def val_generator():
    while True:

        sequence_length = np.random.randint(150, 300)+150       
        data=make_data(1000,sequence_length,features_num,2) # category=2 in val

        encoder_input_data = data[:,:-150,:] # all but last 150 

        decoder_input_data = data[:,-151,:] # the one before the last 150.
        decoder_input_data=decoder_input_data.reshape((decoder_input_data.shape[0],1,decoder_input_data.shape[1]))

        decoder_target_data = (data[:, -150:, :]) # last 150        
        yield [encoder_input_data, decoder_input_data], decoder_target_data

filepath_for_w= 'flux_p2p_s2s_model.h5' 
checkpointer=ModelCheckpoint(filepath_for_w, monitor='val_loss', verbose=0, save_best_only=True, mode='auto', period=1)     
model.fit_generator(train_generator(),callbacks=[checkpointer], steps_per_epoch=30, epochs=2000, verbose=1,validation_data=val_generator(),validation_steps=30)
model.save(filepath_for_w)




def predict_wave(input_wave,input_for_decoder):  # input wave= x[n,:,:], ie points except the last 150; each wave has feature_num features. run this function for all such instances (=n)   
    #print (input_wave.shape)
    #print (input_for_decoder.shape)
    pred= model.predict([input_wave,input_for_decoder])

    return pred

def predict_many_waves_from_input(x):   
    x, x2=x # x == encoder_input_data ; x==2 decoder_input_data

    instance_num= x.shape[0]


    multi_predict_collection=np.zeros((x.shape[0],150,x.shape[2]))

    for n in range(instance_num):
        input_wave=x[n,:,:].reshape(1,x.shape[1],x.shape[2])
        input_for_decoder=x2[n,:,:].reshape(1,x2.shape[1],x2.shape[2])
        wave_prediction=predict_wave(input_wave,input_for_decoder)
        multi_predict_collection[n,:,:]=wave_prediction
    return (multi_predict_collection)

def test_maker():
    if True:        
        sequence_length = np.random.randint(150, 300)+150       
        data=make_data(470,sequence_length,features_num,4) # category=4 in test

        encoder_input_data = data[:,:-150,:] # all but last 150 

        decoder_input_data = data[:,-151,:] # the one before the last 150.
        decoder_input_data=decoder_input_data.reshape((decoder_input_data.shape[0],1,decoder_input_data.shape[1]))

        decoder_target_data = (data[:, -150:, :]) # last 150        
        return [encoder_input_data, decoder_input_data],    decoder_target_data

x,y= test_maker()   



a=predict_many_waves_from_input (x) # is that right..?
x=x[0] # keep the wave (generated data except last 150 time points) 
print (x.shape)
print (y.shape)
print (a.shape)

np.save ('a.npy',a)
np.save ('y.npy',y)
np.save ('x.npy',x)



print (np.mean(np.absolute(y[:,:,0]-a[:,:,0])))
print (np.mean(np.absolute(y[:,:,1]-a[:,:,1])))
print (np.mean(np.absolute(y[:,:,2]-a[:,:,2])))
print (np.mean(np.absolute(y[:,:,3]-a[:,:,3])))
print (np.mean(np.absolute(y[:,:,4]-a[:,:,4])))
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.