Bazı muhabirlerin otokorelasyon hesaplama yöntemleri hakkında ilginç bir soru sordukları için, neredeyse zaman serileri ve otokorelasyon hakkında hiçbir bilgi sahibi olmadan onunla oynamaya başladım.
Muhabir verilerini düzenledi ( bir zaman serisinin veri noktaları) her birinin yanında birer birer gecikmeli olarak kaydırılır, böylece ilk satırın orijinal veri olduğu ikinci satır, verilerin kaydırdığı veri zaman birimi, bir sonraki satır diğeri vb. Bunu sonuna kadar kuyruğa yapıştırarak ve böylece "dairesel" veri setleri yaparak fark ettim.
Sonra, sadece bundan ne çıkabileceğine bakmak için, korelasyon matrisini ve bundan temel bileşenleri hesapladım. Şaşırtıcı bir şekilde, bir frekans ayrışması görüntüsü aldım ve (yine diğer verilerle) bir frekans, Veriler ilk temel bileşendeydi ve dört periyotla ikinci PC'deydi vb. özdeğerli "ilgili" bilgisayarlar ). İlk olarak bunun giriş verilerine bağlı olduğunu düşündüm, ancak şimdi bunun dairesel olarak (Toeplitz "matrisi olarak da bilinir) veri setinin özel setiyle sistematik olarak olduğunu varsayıyorum. PC-çözeltisinin varimax veya diğer rotasyon kriterlerine rotasyonları, biraz farklı ve muhtemelen ilginç sonuçlar verdi, ancak genel olarak böyle bir frekans ayrışımı sağladı gibi görünüyor.
İşte bağlantısıdır yaptığım resimlerin den- nokta veri kümesi; eğriler basitçe faktörmatrisin yüklemelerinden yapılır: bir eğri yükleri bir faktör üzerindeki. İlk PC1'in eğrisi en yüksek genlikleri göstermelidir (kabaca en yüksek yükleme miktarını taşıdığı için)
Sorular:
- Q1: bu tasarım tarafından bir özellik Olduğunu? (bu tür bir veri kümesine sahip PCA'nın)
- S2: Bu yaklaşım gerçekten bir şekilde frekans / dalga boyu analizinde ciddi bir yaklaşım için kullanılabilir mi?
[güncelleme] İşte veri seti (umarım sizin için kopyalanabilir olur)
-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4
-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5
-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3
0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1
2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0
4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2
6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4
5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6
3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5
1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3
1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1
0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1
-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0
-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2
-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3
0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1
3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0
5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3
7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5
6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7
7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6
5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7
4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5
3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4
2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3
3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2
5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3
4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5
3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4
2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3
3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2
4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3