Herhangi bir nedenle, modelinize yalnızca bir değişken ekleyecekseniz, ile en yüksek korelasyona sahip öngörücüyü seçmenin birkaç avantajı vardır. Sadece bir tahminci ile mümkün regresyon modelleri dışında, o zaman bu model en yüksek olan biridir standardize edilmiş regresyon katsayısına da ve (beri R 2 kare olan r gerileme doğrusal bir basit içinde en yüksek) determinasyon katsayısı .yR2r
Ancak, birkaçına ait verileriniz varsa, regresyon modelinizi neden bir öngörücüyle kısıtlamak istediğiniz açık değildir. Yorumlarda belirtildiği gibi, modeliniz birkaç değişken içeriyorsa, sadece korelasyonlara bakmak işe yaramaz. Örneğin, bu dağılım matrisinden, modelinize dahil etmeniz gereken için öngörücülerin x 1 (korelasyon 0.824) ve x 2 (korelasyon 0.782) olduğunu, ancak x 3'ün (korelasyon 0.134) yararlı bir öngörücü olmadığını düşünebilirsiniz .yx1x2x3
yx1x3x2x2x1yyx2x2yx1x1 modelde böyle bir ilişki kalmamıştır.
require(MASS) #for mvrnorm
set.seed(42) #so reproduces same result
Sigma <- matrix(c(1,0.95,0,0.95,1,0,0,0,1),3,3)
N <- 1e4
x <- mvrnorm(n=N, c(0,0,0), Sigma, empirical=TRUE)
data.df <- data.frame(x1=x[,1], x2=x[,2], x3=x[,3])
# y depends on x1 strongly and x3 weakly, but not directly on x2
data.df$y <- with(data.df, 5 + 3*x1 + 0.5*x3) + rnorm(N, sd=2)
round(cor(data.df), 3)
# x1 x2 x3 y
# x1 1.000 0.950 0.000 0.824
# x2 0.950 1.000 0.000 0.782
# x3 0.000 0.000 1.000 0.134
# y 0.824 0.782 0.134 1.000
# Note: x1 and x2 are highly correlated
# Since y is highly correlated with x1, it is with x2 too
# y depended only weakly on x3, their correlation is much lower
pairs(~y+x1+x2+x3,data=data.df, main="Scatterplot matrix")
# produces scatter plot above
model.lm <- lm(data=data.df, y ~ x1 + x2 + x3)
summary(model.lm)
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 4.99599 0.02018 247.631 <2e-16 ***
# x1 3.03724 0.06462 47.005 <2e-16 ***
# x2 -0.02436 0.06462 -0.377 0.706
# x3 0.49185 0.02018 24.378 <2e-16 ***
x1x2x2x1x3x3
Ve işte daha da kötü bir örnek:
Sigma <- matrix(c(1,0,0,0.5,0,1,0,0.5,0,0,1,0.5,0.5,0.5,0.5,1),4,4)
N <- 1e4
x <- mvrnorm(n=N, c(0,0,0,0), Sigma, empirical=TRUE)
data.df <- data.frame(x1=x[,1], x2=x[,2], x3=x[,3], x4=x[,4])
# y depends on x1, x2 and x3 but not directly on x4
data.df$y <- with(data.df, 5 + x1 + x2 + x3) + rnorm(N, sd=2)
round(cor(data.df), 3)
# x1 x2 x3 x4 y
# x1 1.000 0.000 0.000 0.500 0.387
# x2 0.000 1.000 0.000 0.500 0.391
# x3 0.000 0.000 1.000 0.500 0.378
# x4 0.500 0.500 0.500 1.000 0.583
# y 0.387 0.391 0.378 0.583 1.000
pairs(~y+x1+x2+x3+x4,data=data.df, main="Scatterplot matrix")
model.lm <- lm(data=data.df, y ~ x1 + x2 + x3 +x4)
summary(model.lm)
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 4.98117 0.01979 251.682 <2e-16 ***
# x1 0.99874 0.02799 35.681 <2e-16 ***
# x2 1.00812 0.02799 36.016 <2e-16 ***
# x3 0.97302 0.02799 34.762 <2e-16 ***
# x4 0.06002 0.03958 1.516 0.129
yx1x2x3x4x1x2x3x4yy aslında modele ait olmayan değişkeni bulabilir.