Genellikle aynı şekle sahip zaman serisi verilerindeki değişiklikleri tespit etmek istiyorum. Şimdiye kadar changepointR ve cpt.mean(), cpt.var()ve cpt.meanvar()işlevleri için paketle çalıştım . cpt.mean()PELT yöntemi ile veriler genellikle bir seviyede kaldığında iyi çalışır. Ancak, inişler sırasındaki değişiklikleri de tespit etmek istiyorum. Tespit etmek istediğim bir değişiklik örneği, siyah eğrinin aniden düştüğü, örnek kırmızı noktalı çizgiyi takip etmesi gereken bölümdür. Cpt.var () işlevini denedim, ancak iyi sonuçlar alamadım. Herhangi bir tavsiyeniz var mı (mutlaka R kullanmak zorunda değiller)?

Değişiklik içeren veriler (R nesnesi olarak):
dat.change <- c(12.013995263488, 11.8460207231808, 11.2845153487846, 11.7884417180764,
11.6865425802022, 11.4703118125303, 11.4677576899063, 11.0227199625084,
11.274775836817, 11.03073498338, 10.7771805591742, 10.7383206158923,
10.5847230134625, 10.2479315651441, 10.4196381241735, 10.467607842288,
10.3682422713283, 9.7834431752935, 9.76649842404295, 9.78257968297228,
9.87817694914062, 9.3449034905713, 9.56400153361727, 9.78120084558148,
9.3445162813738, 9.36767436354887, 9.12070987223648, 9.21909859069157,
8.85136359917466, 8.8814423003979, 8.61830163359642, 8.44796977628488,
8.06957847272046, 8.37999165387824, 7.98213210294954, 8.21977468333673,
7.683960439316, 7.73213584532496, 7.98956476021092, 7.83036046746187,
7.64496198988985, 4.49693528397253, 6.3459274845112, 5.86993447552116,
4.58301192892403, 5.63419551523625, 6.67847511602895, 7.2005344054883,
5.54970477623895, 6.00011922569104, 6.882667104467, 4.74057284230894,
6.2140437333397, 6.18511450451019, 5.83973575417525, 6.57271194428385,
5.36261938326723, 5.48948831338016, 4.93968645996861, 4.52598133247377,
4.56372558828803, 5.74515428123725, 5.45931581984165, 5.58701112949141,
6.00585679276365, 5.41639695946931, 4.55361875158434, 6.23720558202826,
6.19433060301002, 5.82989415940829, 5.69321394985076, 5.53585871082265,
5.42684812413063, 5.80887522466946, 5.56660158483312, 5.7284521523444,
5.25425775891636, 5.4227645808924, 5.34778016248718, 5.07084809927736,
5.324066161355, 5.03526881241705, 5.17387528516352, 5.29864121433813,
5.36894461582415, 5.07436929444317, 4.80619983525015, 4.42858947882894,
4.33623051506001, 4.33481791951228, 4.38041031792294, 3.90012900415342,
4.04262777674943, 4.34383842876647, 4.36984816425014, 4.11641092254315,
3.83985887104645, 3.81813419810962, 3.85174630901311, 3.66434598962311,
3.4281724860426, 2.99726515704766, 2.96694634792395, 2.94003031547181,
3.20892607367132, 3.03980832743458, 2.85952185077593, 2.70595278908964,
2.50931109659839, 2.1912274016859)

. Gerçek ve temizlenmiş arsa çok benzer
. Kalıntıların (her zaman gösterilmesi gereken) bir arsa, artıkların
zorunlu acf'si ile birlikte buradadır
. Artıkların istatistikleri, "düello modelleri" arasında karşılaştırma yaparken her zaman faydalıdır
. Fiili / Sığdır / Tahmin grafiği burada


