Kısa cevap
Tanımladığınız pdf, en uygun haliyle bir Subbotin dağılımı olarak bilinir ... 1923'te, aynı fonksiyon biçimine sahip olan Subbotin tarafından yazılmış makaleye bakın, deyin .Y=X−μ
- Subbotin, MT (1923), Hata sıklığı yasası üzerine, Matematicheskii Sbornik, 31, 296-301.
pdf'ye 5. formundaki denkleminde giren:
f(y)=Kexp[−(|y|σ)p]
entegrasyon sabiti ile: Xian'ın türetilmesine göreβ=σpK=p2σΓ(1p)β=σp
Daha uzun cevap
Vikipedi ne yazık ki her zaman 'güncel' değil, doğru, ya da bazen zamanın sadece 80 yıl gerisinde. Subbotin'den (1923) sonra, aşağıdakiler dahil olmak üzere literatürde yaygın olarak kullanılmıştır:
Diananda, PH (1949), Azami olabilirlik tahminlerinin bazı özellikleri hakkında not, Cambridge Felsefe Derneği Bildirileri, 45, 536-544.
Turner, ME (1960), Sezgisel tahmin yöntemleri, Biometrics, 16 (2), 299-301.
Zeckhauser, R. ve Thompson, M. (1970), Normal olmayan hata terimleriyle doğrusal regresyon, Ekonomi ve İstatistiğin Gözden Geçirilmesi, 52, 280-286.
McDonald, JB ve Newey, WK (1988), Genelleştirilmiş t dağılımı ile regresyon modellerinin kısmen uyarlamalı tahmini, Econometric Theory, 4, 428-457.
Johnson, NL, Kotz, S. ve Balakrishnan, N. (1995), Sürekli Tek Değişkenli Dağılımlar, cilt 2, 2. baskı, Wiley: New York (1995, s.422)
Mineo, AM ve Ruggieri, M. (2005), Üstel Güç dağılımı için bir yazılım aracı: normal paket, İstatistiksel Yazılım Dergisi, 12 (4), 1-21.
... tümü Wiki'de referans verilen makaleden önce. 80 yıldan eski olmasının yanı sıra, Wiki'de 'Genelleştirilmiş Normal' olarak kullanılan isim de uygun gözükmüyor çünkü Normal'in genelleştirilmesi olan dağılımların sonsuzluğu var ve bu ad her durumda literatürde belirsiz. Aynı zamanda asıl yazarı kabul etmekte başarısız olur.