Ben belirli bir grup birey (3 grup var) için değişken logInd Yılın etkisi analiz etmeye çalışıyorum. En basit model:
> fix1 = lm(logInd ~ 0 + Group + Year:Group, data = mydata)
> summary(fix1)
Call:
lm(formula = logInd ~ 0 + Group + Year:Group, data = mydata)
Residuals:
Min 1Q Median 3Q Max
-5.5835 -0.3543 -0.0024 0.3944 4.7294
Coefficients:
Estimate Std. Error t value Pr(>|t|)
Group1 4.6395740 0.0466217 99.515 < 2e-16 ***
Group2 4.8094268 0.0534118 90.044 < 2e-16 ***
Group3 4.5607287 0.0561066 81.287 < 2e-16 ***
Group1:Year -0.0084165 0.0027144 -3.101 0.00195 **
Group2:Year 0.0032369 0.0031098 1.041 0.29802
Group3:Year 0.0006081 0.0032666 0.186 0.85235
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7926 on 2981 degrees of freedom
Multiple R-squared: 0.9717, Adjusted R-squared: 0.9716
F-statistic: 1.705e+04 on 6 and 2981 DF, p-value: < 2.2e-16
Grup1'in önemli ölçüde azaldığını, Grup2 ve 3'ün arttığını ancak önemli ölçüde artmadığını görebiliriz.
Açıkçası birey rastgele etkisi olmalıdır, bu yüzden her bir birey için rastgele kesişme etkisi tanıtmak:
> mix1a = lmer(logInd ~ 0 + Group + Year:Group + (1|Individual), data = mydata)
> summary(mix1a)
Linear mixed model fit by REML
Formula: logInd ~ 0 + Group + Year:Group + (1 | Individual)
Data: mydata
AIC BIC logLik deviance REMLdev
4727 4775 -2356 4671 4711
Random effects:
Groups Name Variance Std.Dev.
Individual (Intercept) 0.39357 0.62735
Residual 0.24532 0.49530
Number of obs: 2987, groups: Individual, 103
Fixed effects:
Estimate Std. Error t value
Group1 4.6395740 0.1010868 45.90
Group2 4.8094268 0.1158095 41.53
Group3 4.5607287 0.1216522 37.49
Group1:Year -0.0084165 0.0016963 -4.96
Group2:Year 0.0032369 0.0019433 1.67
Group3:Year 0.0006081 0.0020414 0.30
Correlation of Fixed Effects:
Group1 Group2 Group3 Grp1:Y Grp2:Y
Group2 0.000
Group3 0.000 0.000
Group1:Year -0.252 0.000 0.000
Group2:Year 0.000 -0.252 0.000 0.000
Group3:Year 0.000 0.000 -0.252 0.000 0.000
Beklenen bir etkisi oldu - yamaçların GD (Grup1-3: Yıl katsayıları) artık daha düşük ve kalan SE de daha düşük.
Bireyler eğimde farklıdır, bu yüzden rastgele eğim etkisini de tanıttım:
> mix1c = lmer(logInd ~ 0 + Group + Year:Group + (1 + Year|Individual), data = mydata)
> summary(mix1c)
Linear mixed model fit by REML
Formula: logInd ~ 0 + Group + Year:Group + (1 + Year | Individual)
Data: mydata
AIC BIC logLik deviance REMLdev
2941 3001 -1461 2885 2921
Random effects:
Groups Name Variance Std.Dev. Corr
Individual (Intercept) 0.1054790 0.324775
Year 0.0017447 0.041769 -0.246
Residual 0.1223920 0.349846
Number of obs: 2987, groups: Individual, 103
Fixed effects:
Estimate Std. Error t value
Group1 4.6395740 0.0541746 85.64
Group2 4.8094268 0.0620648 77.49
Group3 4.5607287 0.0651960 69.95
Group1:Year -0.0084165 0.0065557 -1.28
Group2:Year 0.0032369 0.0075105 0.43
Group3:Year 0.0006081 0.0078894 0.08
Correlation of Fixed Effects:
Group1 Group2 Group3 Grp1:Y Grp2:Y
Group2 0.000
Group3 0.000 0.000
Group1:Year -0.285 0.000 0.000
Group2:Year 0.000 -0.285 0.000 0.000
Group3:Year 0.000 0.000 -0.285 0.000 0.000
Ama şimdi, beklentinin aksine, yamaçların GD (Grup1-3: Yıl katsayıları) artık çok daha yüksek, rastgele bir etkiye sahip olmadığından bile daha yüksek!
Bu nasıl mümkün olabilir? Rastgele etkinin açıklanamayan değişkenliği "yiyeceğini" ve tahminin "sükunetini" artıracağını umuyorum!
Bununla birlikte, kalan SE beklendiği gibi davranır - rastgele kesişme modelinden daha düşüktür.
Gerekirse veriler aşağıdadır.
Düzenle
Şimdi şaşırtıcı bir gerçeğin farkına vardım. Her birey için lineer regresyonu ayrı ayrı yaparsam ve sonuçta ortaya çıkan yamaçlarda ANOVA çalıştırırsam , rastgele yamaç modeliyle tam olarak aynı sonucu alırım! Nedenini biliyor musun?
indivSlope = c()
for (indiv in 1:103) {
mod1 = lm(logInd ~ Year, data = mydata[mydata$Individual == indiv,])
indivSlope[indiv] = coef(mod1)['Year']
}
indivGroup = unique(mydata[,c("Individual", "Group")])[,"Group"]
anova1 = lm(indivSlope ~ 0 + indivGroup)
summary(anova1)
Call:
lm(formula = indivSlope ~ 0 + indivGroup)
Residuals:
Min 1Q Median 3Q Max
-0.176288 -0.016502 0.004692 0.020316 0.153086
Coefficients:
Estimate Std. Error t value Pr(>|t|)
indivGroup1 -0.0084165 0.0065555 -1.284 0.202
indivGroup2 0.0032369 0.0075103 0.431 0.667
indivGroup3 0.0006081 0.0078892 0.077 0.939
Residual standard error: 0.04248 on 100 degrees of freedom
Multiple R-squared: 0.01807, Adjusted R-squared: -0.01139
F-statistic: 0.6133 on 3 and 100 DF, p-value: 0.6079
Gerekirse veriler aşağıdadır.
Group
Grubun engelidir , ve Group
:Year
Grup içindeki eğim . Yıl ve kesişmenin ana etkisi dahil edilirse, tahminler Grubun kesişme noktasının farklılıkları olacaktır.ve Grup 1 ve benzer şekilde eğimlerle.
logInd ~ Year*Group
, sadece katsayılar farklı şekillerde, başka bir şey değil. Zevkinize ve hangi katsayıları sevdiğinize bağlı, başka bir şey değil. Yazarken 1. modelimde "Yıl ana etkisi" nin dışlanması yoktur ... logInd ~ Year*Group
tam olarak aynı şeyi yapar, o zaman Year
katsayı ana etki değil Grup1: Yıl'dır.