modeli için i bir birönselmodeli kümesine bel ekten edilebilir Ô i = bir I C i - m ı n, A I Cı modeli kümesinin en iyi model olacaktır burada Í = 0 . Model setindeki tüm modeller içinkanıtın gücünü ( w i )tahmin etmekiçin Δ i değerlerinikullanabiliriz,burada:
w i = e ( - 0.5 Δ i )Bir benCbenΔben= A ICben- m ı n, A ICΔ =0Δbenwben
Bu genellikle modeli için "kanıt ağırlığı" olarak refere edilmiştiriverilenönselmodeli seti. OlarakÔiartarwımodeli öne azalıridaha akla yatkındır. Buwideğerleri,imodelininpriorimodel setineverilen en iyi modelolma olasılığı olarak yorumlanabilir. Ayrıca modelin göreli ihtimalini hesaplamak olabilirimodeli karşıjolarak
wben= e( - 0,5 Δben)ΣR,r = 1e( - 0,5 Δben).
benΔbenwbenbenwbenbenbenj . Örneğin, eğer
w i = 0.8 ve
w j = 0.1 ise,
i modelinin
j modelinden 8 kat daha muhtemel olduğunusöyleyebiliriz.
wben/ wjwben= 0,8wj= 0,1benj
Not: , model 1 en iyi model olduğunda (en küçük A I C ). Burnham ve Anderson (2002) bunu kanıt oranı olarak adlandırmaktadır. Bu tablo kanıt oranının en iyi modele göre nasıl değiştiğini göstermektedir.w1/ w2= e0.5 Δ2Bir benC
Information Loss (Delta) Evidence Ratio
0 1.0
2 2.7
4 7.4
8 54.6
10 148.4
12 403.4
15 1808.0
Referans
Burnham, KP ve DR Anderson. 2002. Model seçimi ve çoklu model çıkarımı: pratik bir bilgi-teorik yaklaşım. İkinci baskı. Springer, New York, ABD.
Anderson, DR 2008. Yaşam bilimlerinde model temelli çıkarım: kanıtlar üzerine bir astar. Springer, New York, ABD.