Şu anda bağımsız değişkenler olarak sadece kategorik / faktör değişkenlerine sahip olduğum bir regresyon modeli üzerinde çalışıyorum. Bağımlı değişkenim logit dönüşümü oranıdır.
R, "faktör" türünden hemen sonra aptalları nasıl kodlayacağını otomatik olarak bildiğinden, R'de normal bir regresyon çalıştırmak oldukça kolaydır. Bununla birlikte, bu tip kodlama, her bir değişkenten bir kategorinin taban çizgisi olarak kullanıldığını, dolayısıyla yorumlanmasını zorlaştırdığını ima eder.
Profesörüm bana bunun yerine sadece efekt kodlaması kullanmamı söyledi (-1 veya 1), çünkü bu, kesme için büyük ortalamanın kullanımını ima eder.
Bununla nasıl başa çıkacağını bilen var mı?
Şimdiye kadar denedim:
gm <- mean(tapply(ds$ln.crea, ds$month, mean))
model <- lm(ln.crea ~ month + month*month + year + year*year, data = ds, contrasts = list(gm = contr.sum))
Call:
lm(formula = ln.crea ~ month + month * month + year + year *
year, data = ds, contrasts = list(gm = contr.sum))
Residuals:
Min 1Q Median 3Q Max
-0.89483 -0.19239 -0.03651 0.14955 0.89671
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.244493 0.204502 -15.865 <2e-16 ***
monthFeb -0.124035 0.144604 -0.858 0.3928
monthMar -0.365223 0.144604 -2.526 0.0129 *
monthApr -0.240314 0.144604 -1.662 0.0993 .
monthMay -0.109138 0.144604 -0.755 0.4520
monthJun -0.350185 0.144604 -2.422 0.0170 *
monthJul 0.050518 0.144604 0.349 0.7275
monthAug -0.206436 0.144604 -1.428 0.1562
monthSep -0.134197 0.142327 -0.943 0.3478
monthOct -0.178182 0.142327 -1.252 0.2132
monthNov -0.119126 0.142327 -0.837 0.4044
monthDec -0.147681 0.142327 -1.038 0.3017
year1999 0.482988 0.200196 2.413 0.0174 *
year2000 -0.018540 0.200196 -0.093 0.9264
year2001 -0.166511 0.200196 -0.832 0.4073
year2002 -0.056698 0.200196 -0.283 0.7775
year2003 -0.173219 0.200196 -0.865 0.3887
year2004 0.013831 0.200196 0.069 0.9450
year2005 0.007362 0.200196 0.037 0.9707
year2006 -0.281472 0.200196 -1.406 0.1625
year2007 -0.266659 0.200196 -1.332 0.1855
year2008 -0.248883 0.200196 -1.243 0.2164
year2009 -0.153083 0.200196 -0.765 0.4461
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3391 on 113 degrees of freedom
Multiple R-squared: 0.3626, Adjusted R-squared: 0.2385
F-statistic: 2.922 on 22 and 113 DF, p-value: 0.0001131