Birisi bana boyuna verileri kullanma aov()
ve lme()
analiz etme arasındaki farkı söyleyebilir ve bu iki yöntemden elde edilen sonuçları nasıl yorumlayabilir?
Aşağıda, aynı kullanarak veri kümesi analiz aov()
ve lme()
ve 2 farklı sonuçlar aldık. İle aov()
ben Tedavi etkileşimi süresinde önemli bir sonuç var, ama doğrusal karma modelin yerleştirilmesi, Tedavi etkileşimi zaman önemsizdir.
> UOP.kg.aov <- aov(UOP.kg~time*treat+Error(id), raw3.42)
> summary(UOP.kg.aov)
Error: id
Df Sum Sq Mean Sq F value Pr(>F)
treat 1 0.142 0.1421 0.0377 0.8471
Residuals 39 147.129 3.7725
Error: Within
Df Sum Sq Mean Sq F value Pr(>F)
time 1 194.087 194.087 534.3542 < 2e-16 ***
time:treat 1 2.077 2.077 5.7197 0.01792 *
Residuals 162 58.841 0.363
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> UOP.kg.lme <- lme(UOP.kg~time*treat, random=list(id=pdDiag(~time)),
na.action=na.omit, raw3.42)
> summary(UOP.kg.lme)
Linear mixed-effects model fit by REML
Data: raw3.42
AIC BIC logLik
225.7806 248.9037 -105.8903
Random effects:
Formula: ~time | id
Structure: Diagonal
(Intercept) time Residual
StdDev: 0.6817425 0.5121545 0.1780466
Fixed effects: UOP.kg ~ time + treat + time:treat
Value Std.Error DF t-value p-value
(Intercept) 0.5901420 0.1480515 162 3.986059 0.0001
time 0.8623864 0.1104533 162 7.807701 0.0000
treat -0.2144487 0.2174843 39 -0.986042 0.3302
time:treat 0.1979578 0.1622534 162 1.220053 0.2242
Correlation:
(Intr) time treat
time -0.023
treat -0.681 0.016
time:treat 0.016 -0.681 -0.023
Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-3.198315285 -0.384858426 0.002705899 0.404637305 2.049705655
Number of Observations: 205
Number of Groups: 41