«loss-function» etiketlenmiş sorular

5
Maliyet fonksiyonları neden kare hatasını kullanıyor?
Makine öğrenmeye yeni başlıyorum ve şimdiye dek tek değişkenli doğrusal regresyon ile uğraşıyorum. Bir hipotez olduğunu öğrendim: hθ( x ) = θ0+ θ1xhθ(x)=θ0+θ1xh_\theta(x)=\theta_0+\theta_1x ve parametreleri için iyi değerleri bulmak için, hesaplanan sonuç ile test verilerimizin gerçek sonucu arasındaki farkı en aza indirmek istiyoruz. Yani çıkardıkθ 1θ0θ0\theta_0θ1θ1\theta_1 hθ( x( i )) …

4
Gürültü Karşıtlığı Tahmini (NCE) kaybının sezgisel açıklaması?
Bu iki kaynaktan NCE'yi (bir aday örnekleme şekli) okudum: Tensorflow yazımı Orjinal kağıt Birisi bana şu konuda yardımcı olabilir: NCE'nin nasıl çalıştığının basit bir açıklaması (Yukarıdakileri ayrıştırmanın ve anlamanın zor olduğunu gördüm, bu yüzden orada sunulan matematiğe yol açan sezgisel bir şey harika olurdu) Yukarıdaki 1. maddeden sonra, bunun Negatif …

1
Xgboost neden GradientBoostingClassifier'ı sklearn'den çok daha hızlı?
100 sayısal özellikli 50k örneklerin üzerinde bir degrade yükseltme modeli yetiştirmeye çalışıyorum. XGBClassifieriken benim makinede 43 saniye içinde kolları 500 ağaçları, GradientBoostingClassifierkolları sadece 10 ağaç (!) 1 dakika ve 2 saniye :( Ben rahatsız etmedi o saat sürer olarak 500 ağaç büyümeye çalışan. Aynı kullanıyorum learning_rateve max_depthayarları , aşağıya bakınız. …
29 scikit-learn  xgboost  gbm  data-mining  classification  data-cleaning  machine-learning  reinforcement-learning  data-mining  bigdata  dataset  nlp  language-model  stanford-nlp  machine-learning  neural-network  deep-learning  randomized-algorithms  machine-learning  beginner  career  xgboost  loss-function  neural-network  software-recommendation  naive-bayes-classifier  classification  scikit-learn  feature-selection  r  random-forest  cross-validation  data-mining  python  scikit-learn  random-forest  churn  python  clustering  k-means  machine-learning  nlp  sentiment-analysis  machine-learning  programming  python  scikit-learn  nltk  gensim  visualization  data  csv  neural-network  deep-learning  descriptive-statistics  machine-learning  supervised-learning  text-mining  orange  data  parameter-estimation  python  pandas  scraping  r  clustering  k-means  unsupervised-learning 



3
Dengesiz Veriler için Tensorflow Ayarlama Fonksiyonu
Dengesiz verilerle bir sınıflandırma problemim var. Aşırı ve yetersiz örneklemenin yanı sıra yeterince temsil edilmeyen kategorik çıktıların maliyetini değiştirmenin daha iyi uyuma yol açacağını okudum. Bu yapılmadan önce tensorflow her girdiyi çoğunluk grubu olarak sınıflandırır (ve anlamsız olduğu gibi% 90'ın üzerinde doğruluk kazanır). Her grubun ters yüzdesinin günlüğünün, denediğim en …
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.