Küplerim üzerinde çalışırken bu sorunu yaşadığımda , John Amanatides ve Andrew Woo, 1987'den bu göreve uygulanabilecek bir algoritmayı tanımlayan “Ray İzleme için Hızlı Voksel Geçiş Algoritması” adlı bir yazı buldum ; doğrudur ve kesişen her voksel için yalnızca bir döngü yinelemesi gerekir.
Makalenin algoritmasının ilgili bölümlerinin JavaScript’te uygulanmasını yazdım. Uygulamam iki özellik ekliyor: Bu, raycast'ın mesafesi için bir sınır belirlemeye izin veriyor (performans sorunlarından kaçınmak ve sınırlı bir 'erişim' tanımlamak için kullanışlıdır) ve ayrıca ışının girdiği her vokselin hangi yüzünü hesaplar.
Giriş origin
vektörü, bir vokselin yan uzunluğu 1 olacak şekilde ölçeklendirilmelidir. direction
Vektörün uzunluğu önemli değildir ancak algoritmanın sayısal doğruluğunu etkileyebilir.
Algoritma, ışının parametreli bir gösterimini kullanarak çalışır origin + t * direction
. Her bir eksen koordinat sağlamak için, takip t
değişkenleri (koordinat tamsayı kısmını değiştirmek örneğin) o eksen boyunca bir voksel sınırın geçilmesi için yeterli bir adım aldı eğer sahip olduğu değere tMaxX
, tMaxY
ve tMaxZ
. Sonra, hangi eksenin en az olduğu - yani hangi voksel-sınırının en yakın olduğu boyunca ( step
ve tDelta
değişkenlerini kullanarak) bir adım atıyoruz tMax
.
/**
* Call the callback with (x,y,z,value,face) of all blocks along the line
* segment from point 'origin' in vector direction 'direction' of length
* 'radius'. 'radius' may be infinite.
*
* 'face' is the normal vector of the face of that block that was entered.
* It should not be used after the callback returns.
*
* If the callback returns a true value, the traversal will be stopped.
*/
function raycast(origin, direction, radius, callback) {
// From "A Fast Voxel Traversal Algorithm for Ray Tracing"
// by John Amanatides and Andrew Woo, 1987
// <http://www.cse.yorku.ca/~amana/research/grid.pdf>
// <http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.3443>
// Extensions to the described algorithm:
// • Imposed a distance limit.
// • The face passed through to reach the current cube is provided to
// the callback.
// The foundation of this algorithm is a parameterized representation of
// the provided ray,
// origin + t * direction,
// except that t is not actually stored; rather, at any given point in the
// traversal, we keep track of the *greater* t values which we would have
// if we took a step sufficient to cross a cube boundary along that axis
// (i.e. change the integer part of the coordinate) in the variables
// tMaxX, tMaxY, and tMaxZ.
// Cube containing origin point.
var x = Math.floor(origin[0]);
var y = Math.floor(origin[1]);
var z = Math.floor(origin[2]);
// Break out direction vector.
var dx = direction[0];
var dy = direction[1];
var dz = direction[2];
// Direction to increment x,y,z when stepping.
var stepX = signum(dx);
var stepY = signum(dy);
var stepZ = signum(dz);
// See description above. The initial values depend on the fractional
// part of the origin.
var tMaxX = intbound(origin[0], dx);
var tMaxY = intbound(origin[1], dy);
var tMaxZ = intbound(origin[2], dz);
// The change in t when taking a step (always positive).
var tDeltaX = stepX/dx;
var tDeltaY = stepY/dy;
var tDeltaZ = stepZ/dz;
// Buffer for reporting faces to the callback.
var face = vec3.create();
// Avoids an infinite loop.
if (dx === 0 && dy === 0 && dz === 0)
throw new RangeError("Raycast in zero direction!");
// Rescale from units of 1 cube-edge to units of 'direction' so we can
// compare with 't'.
radius /= Math.sqrt(dx*dx+dy*dy+dz*dz);
while (/* ray has not gone past bounds of world */
(stepX > 0 ? x < wx : x >= 0) &&
(stepY > 0 ? y < wy : y >= 0) &&
(stepZ > 0 ? z < wz : z >= 0)) {
// Invoke the callback, unless we are not *yet* within the bounds of the
// world.
if (!(x < 0 || y < 0 || z < 0 || x >= wx || y >= wy || z >= wz))
if (callback(x, y, z, blocks[x*wy*wz + y*wz + z], face))
break;
// tMaxX stores the t-value at which we cross a cube boundary along the
// X axis, and similarly for Y and Z. Therefore, choosing the least tMax
// chooses the closest cube boundary. Only the first case of the four
// has been commented in detail.
if (tMaxX < tMaxY) {
if (tMaxX < tMaxZ) {
if (tMaxX > radius) break;
// Update which cube we are now in.
x += stepX;
// Adjust tMaxX to the next X-oriented boundary crossing.
tMaxX += tDeltaX;
// Record the normal vector of the cube face we entered.
face[0] = -stepX;
face[1] = 0;
face[2] = 0;
} else {
if (tMaxZ > radius) break;
z += stepZ;
tMaxZ += tDeltaZ;
face[0] = 0;
face[1] = 0;
face[2] = -stepZ;
}
} else {
if (tMaxY < tMaxZ) {
if (tMaxY > radius) break;
y += stepY;
tMaxY += tDeltaY;
face[0] = 0;
face[1] = -stepY;
face[2] = 0;
} else {
// Identical to the second case, repeated for simplicity in
// the conditionals.
if (tMaxZ > radius) break;
z += stepZ;
tMaxZ += tDeltaZ;
face[0] = 0;
face[1] = 0;
face[2] = -stepZ;
}
}
}
}
function intbound(s, ds) {
// Find the smallest positive t such that s+t*ds is an integer.
if (ds < 0) {
return intbound(-s, -ds);
} else {
s = mod(s, 1);
// problem is now s+t*ds = 1
return (1-s)/ds;
}
}
function signum(x) {
return x > 0 ? 1 : x < 0 ? -1 : 0;
}
function mod(value, modulus) {
return (value % modulus + modulus) % modulus;
}
GitHub'daki kaynağın bu sürümüne kalıcı bağlantı .