Sevgili millet - Açıklayamayacağım tuhaf bir şey fark ettim, ya sen? Özetle: bir lojistik regresyon modelinde bir güven aralığı hesaplamaya yönelik manuel yaklaşım ve R işlevi confint()
farklı sonuçlar verir.
Hosmer ve Lemeshow'un Applied Logistic Regresyon (2. Basım) bölümünden geçiyorum . 3. bölümde, oran oranını ve% 95 güven aralığını hesaplama örneği vardır. R kullanarak modeli kolayca yeniden oluşturabilirim:
Call:
glm(formula = dataset$CHD ~ as.factor(dataset$dich.age), family = "binomial")
Deviance Residuals:
Min 1Q Median 3Q Max
-1.734 -0.847 -0.847 0.709 1.549
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.8408 0.2551 -3.296 0.00098 ***
as.factor(dataset$dich.age)1 2.0935 0.5285 3.961 7.46e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 136.66 on 99 degrees of freedom
Residual deviance: 117.96 on 98 degrees of freedom
AIC: 121.96
Number of Fisher Scoring iterations: 4
Ancak, parametrelerin güven aralıklarını hesapladığımda, metinde verilene göre farklı bir aralık alıyorum:
> exp(confint(model))
Waiting for profiling to be done...
2.5 % 97.5 %
(Intercept) 0.2566283 0.7013384
as.factor(dataset$dich.age)1 3.0293727 24.7013080
Hosmer ve Lemeshow aşağıdaki formülü önerir:
ve bunun için güven aralığını hesaplarlar as.factor(dataset$dich.age)1
(2.9, 22.9).
Bu R yapmak için basit görünüyor:
# upper CI for beta
exp(summary(model)$coefficients[2,1]+1.96*summary(model)$coefficients[2,2])
# lower CI for beta
exp(summary(model)$coefficients[2,1]-1.96*summary(model)$coefficients[2,2])
kitapla aynı cevabı verir.
Ancak, neden herhangi bir düşünceye neden confint()
farklı sonuçlar veriyor gibi görünüyor? Kullanırken birçok insan örneği gördüm confint()
.