«ranks» etiketlenmiş sorular


4
Degrade artırıcı makine doğruluğu, yineleme sayısı arttıkça azalır
Gradyan arttırıcı makine algoritmasını caretR'deki paket üzerinden deniyorum. Küçük bir kolej veri kümesi kullanarak, aşağıdaki kodu koştu: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- "yes" ### Gradient boosting machine algorithm. ### set.seed(123) fitControl <- trainControl(method = …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

2
Medyanlar eşit olduğunda Mann-Whitney U testi neden önemlidir?
Anlamadığım bir Mann-Whitney sıralama testinden sonuçlar aldım. İki popülasyonun medyanı aynıdır (6.9). Her nüfusun üst ve alt miktarları: 6.64 ve 7.2 6.60 ve 7.1 Bu popülasyonları karşılaştıran testten elde edilen p değeri 0.007'dir. Bu popülasyonlar nasıl önemli ölçüde farklı olabilir? Medyanla ilgili yayılma nedeniyle mi? 2'yi karşılaştıran bir kutu grafiği, …

1
Caret glmnet vs cv.glmnet
Optimal bir lambda aramak için glmnetiçeride caretkullanma cv.glmnetve aynı görevi yapmak için kullanma karşılaştırmasında çok fazla karışıklık var gibi görünüyor . Birçok soru yöneltildi, örneğin: Sınıflandırma modeli train.glmnet mi cv.glmnet mi? Glmnet'i caret ile kullanmanın doğru yolu nedir? "Caret" kullanarak çapraz onaylama "glmnet" ancak sorunun tekrarlanabilirliğinden kaynaklanabilecek hiçbir cevap verilmemiştir. …

5
Çok sayıda veri noktasındaki değerlerin gösterimi nasıl yapılır?
Çok büyük bir veri setim var ve yaklaşık% 5 rasgele değerler eksik. Bu değişkenler birbiriyle ilişkilidir. Aşağıdaki örnek R veri kümesi sadece yapay korelasyonlu verilere sahip bir oyuncak örneğidir. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, 2000000, replace = TRUE), ncol = 10000) colnames(xmat) <- paste ("M", 1:10000, …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

1
Sıradan Verileri Görüntüleme - Araçlar, Medya ve Ortalama Sıralamalar
Normalde dağıtılmayan bazı sıralı verilerim var, bu yüzden Mann-Whitney U Testini kullanarak parametrik olmayan testler yapmaya karar verdim. Yedi puan için gruplar arasındaki farklılıklara bakıyorum - bu puanlar her konu için 0, 1, 2 veya 3'tür. Verilerimi nasıl görüntüleyeceğimi bulmakta zorlanıyorum! Verileri medyanları (ve medyanların IQR'sini) kullanarak sunarsam, farkların nerede …

1
Anova () ve drop1 () neden GLMM'ler için farklı cevaplar verdi?
Formun bir GLMM var: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Kullandığımda , araç paketinden veya drop1(model, test="Chi")kullandığımdan farklı sonuçlar alıyorum . Bu son ikisi aynı cevapları verir.Anova(model, type="III")summary(model) Bir grup uydurma veri kullanarak, bu iki yöntemin normalde farklı olmadığını gördüm. Dengeli doğrusal …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

2
Normallik varsayımına rağmen sıralar Pearson korelasyonu neden geçerlidir?
Şu anda Pearson korelasyonları için varsayımları okuyorum. Takip eden t-testi için önemli bir varsayım, her iki değişkenin de normal dağılımlardan geldiği; eğer yapmazlarsa, Spearman rho gibi alternatif önlemlerin kullanılması savunulur. Spearman korelasyonu Pearson korelasyonu gibi hesaplanır, sadece X ve Y yerine X ve Y safhaları kullanılarak doğru mu? Benim sorum …
Sitemizi kullandığınızda şunları okuyup anladığınızı kabul etmiş olursunuz: Çerez Politikası ve Gizlilik Politikası.
Licensed under cc by-sa 3.0 with attribution required.